Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Gang Liu, ${ }^{\text {a }}$ Ya-Qing Feng, ${ }^{\text {a }}$ Wei Wang, ${ }^{\text {a }}$ Zu-Pei Liang ${ }^{\text {b }}$ and Guang Yang ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail:
xingangl2002@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.085$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4,5,6,7-Tetrachloro-1,3-dioxoisoindolin-2-yl)benzaldehyde

The title compound, $\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{Cl}_{4} \mathrm{NO}_{3}$, was synthesized from tetrachlorophthalic anhydride and 4 -aminobenzaldehyde. In the molecule, the tetrachlorophthalimide unit is nearly planar and makes a dihedral angle of $56.20(3)^{\circ}$ with the benzene ring.

Comment

Phthalimides and N-substituted phthalimides are an important class of compounds because of their interesting biological activities (Lima et al., 2002; Orzeszka et al., 2000). The photophysical properties of phthalimides have been studied intensively during the last two decades (Wintgens et al., 1994; Griesbeck \& Gomer, 1999; Hayashi et al., 1980; Coyle et al., 1978). Phthalimides have also served as starting materials and intermediates for the syntheses of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997).

(I)

The bond lengths and angles in (I) have similar values to those in 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde (DBA; Liu et al., 2004). The tetrachlorophthalimide unit is nearly planar, with a mean deviation of 0.009 (2) \AA for all contributing atoms. The dihedral angle between this plane and that of the

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radius.

Received 4 April 2005 Accepted 6 April 2005 Online 16 April 2005
benzene ring of the benzaldehyde moiety is $56.20(3)^{\circ}$. The $\mathrm{Cl}-\mathrm{C}$ bond lengths in the substituted tetrachlorophthalimide unit are in agreement with values reported in the literature (Sutherland \& Ali-Adib, 1987).

The occurrence of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions results in the formation of discrete dimeric units (Fig. 2, Table 1).

Experimental

A solution of tetrachlorophthalic anhydride (10 mmol) and 4aminobenzaldehyde (10 mmol) in acetic acid (40 ml) was heated at reflux until the disappearance of the starting materials, as evidenced by TLC. The resulting white precipitate was filtered off and washed with a minimal amount of water. The crude product was crystallized from acetic acid to give the title compound, (I). Recrystallization from acetone over 18 d at ambient temperature gave colorless single crystals of (I) suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): $7.66(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 10.08(s 1 \mathrm{H})$.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{Cl}_{4} \mathrm{NO}_{3}$
$M_{r}=389$
Monoclinic, $P 2_{1} / c$
$a=12.6686$ (10) A
$b=8.9057$ (7) \AA
$c=13.4400$ (11) \AA
$\beta=91.7370(10)^{\circ}$
$V=1515.6$ (2) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.801, T_{\text {max }}=0.867$
9918 measured reflections
$D_{x}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4015
reflections
$\theta=2.7-27.8^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.28 \times 0.22 \times 0.18 \mathrm{~mm}$

3619 independent reflections
2932 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-15 \rightarrow 16$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0497 P)^{2}\right. \\
& \quad+0.0714 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }= \\
& -0.34 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.085$
$S=1.10$
3619 reflections
208 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.57	$3.359(2)$	143.0

Symmetry code: (i) $1-x, 1-y,-z$.

H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined as riding on their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 2
View of the dimer formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines). [Symmetry code: (i) $1-x, 1-y,-z$].

ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL.. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Couture, A., Deniau, E., Grandclaudon, P. \& Hoarau, C. (1998). J. Org. Chem. 63, 3128-3132.
Couture, A., Deniau, E., Woisel, P. \& Grandclaudon, P. (1997). Synthesis, 63, 1469-1445.
Coyle, J. D., Newport, G. L. \& Harriman, A. (1978). J. Chem. Soc. Perkin Trans 2, pp. 133-137.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Griesbeck, A. G. \& Gomer, H. (1999). J. Photochem. Photobiol. A Chem. 129, 111-119.
Hayashi, H., Nagakura, S., Kubo, Y. \& Maruyama, K. (1980). Chem. Phys. Lett. 72, 291-294.
Lima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. \& Barreiro, E. (2002). J. Bio. Org. Med. Chem. 10, 3067-3073.

Liu, X. G., Feng, Y. Q., Wu, P., Chen, X. \& Li, F. (2004). Acta Cryst. E60, o2293-o2294.
Orzeszka, A., Kaminsaka, B., Orzesko, G. \& Stareerciak, J. (2000). Farmaco, 55, 619-623.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sutherland, H. H. \& Ali-Adib, Z. (1987). Acta Cryst. C36, 1406-1407.
Wintgens, V., Valat, P., Kossanyi, J., Biczok, L., Demeter, A. \& Berces, T. (1994). J. Chem. Soc. Faraday Trans. 90, 411-421.

